77 Languages
English
Français
Español
Deutsch
Italiano
中文
हिंदी
العربية
Русский
Português
日本語
한국어
Türkçe
Polski
Nederlands
Magyar
Čeština
Svenska
Norsk
Dansk
Kiswahili
ไทย
বাংলা
فارسی
Tiếng Việt
Filipino
Afrikaans
Shqip
Azərbaycanca
Беларуская
Bosanski
Български
Hrvatski
Eesti
Suomi
ქართული
Kreyòl Ayisyen
Hawaiian
Bahasa Indonesia
Gaeilge
Қазақша
Lietuvių
Luganda
Lëtzebuergesch
Македонски
Melayu
Malti
Монгол
မြန်မာ
Norsk
فارسی
ਪੰਜਾਬੀ
Română
Samoan
संस्कृतम्
Српски
Sesotho
ChiShona
سنڌي
Slovenčina
Slovenščina
Soomaali
Basa Sunda
Kiswahili
Svenska
Тоҷикӣ
Татарча
ትግርኛ
Xitsonga
اردو
ئۇيغۇرچە
Oʻzbek
Cymraeg
Xhosa
ייִדיש
Yorùbá
Zulu
Apprentice Mode
10 Modules / ~100 pages
Wizard Mode
~25 Modules / ~400 pages
🎓
CREATE AN EVENT
Artificial Intelligence and Machine Learning
( 25 Modules )
Module #1
Introduction to Artificial Intelligence
Overview of AI, its history, and applications
Module #2
Machine Learning Fundamentals
Introduction to machine learning, types, and supervised/unsupervised learning
Module #3
Math and Statistics for ML
Linear algebra, calculus, probability, and statistics for machine learning
Module #4
Python for Machine Learning
Introduction to Python, NumPy, Pandas, and data manipulation
Module #5
Data Preprocessing
Data cleaning, feature scaling, and feature selection
Module #6
Supervised Learning
Regression, classification, and model evaluation metrics
Module #7
Linear Regression
Simple and multiple linear regression, cost function, and gradient descent
Module #8
Logistic Regression
Binary classification, logistic function, and decision boundaries
Module #9
Decision Trees
Introduction to decision trees, entropy, and information gain
Module #10
Random Forests
Ensemble learning, bagging, and random forests
Module #11
Support Vector Machines
Maximum-margin classification, soft margin, and kernel trick
Module #12
Unsupervised Learning
Clustering, dimensionality reduction, and anomaly detection
Module #13
K-Means Clustering
K-means algorithm, centroid initialization, and convergence
Module #14
Principal Component Analysis
PCA, feature extraction, and dimensionality reduction
Module #15
Deep Learning Fundamentals
Introduction to neural networks, perceptron, and multilayer perceptron
Module #16
Convolutional Neural Networks
CNNs, convolutional layers, and image classification
Module #17
Recurrent Neural Networks
RNNs, LSTM, and sequence modeling
Module #18
Natural Language Processing
Text preprocessing, tokenization, and word embeddings
Module #19
Transfer Learning
Pre-trained models, fine-tuning, and model zoo
Module #20
Model Evaluation and Selection
Model selection, hyperparameter tuning, and cross-validation
Module #21
Handling Imbalanced Datasets
Class imbalance, oversampling, and undersampling techniques
Module #22
Model Deployment
Model deployment, API integration, and Docker containerization
Module #23
AI Ethics and Fairness
Bias detection, fairness metrics, and ethical considerations
Module #24
Special Topics in AI
Generative models, attention mechanisms, and explainable AI
Module #25
Course Wrap-Up & Conclusion
Planning next steps in Artificial Intelligence and Machine Learning career
Ready to Learn, Share, and Compete?
Create Your Event Now
Language Learning Assistant
with Voice Support
Hello! Ready to begin? Let's test your microphone.
▶
Start Listening
Copyright 2025 @ WIZAPE.com
All Rights Reserved
CONTACT-US
PRIVACY POLICY