77 Languages
English
Français
Español
Deutsch
Italiano
中文
हिंदी
العربية
Русский
Português
日本語
한국어
Türkçe
Polski
Nederlands
Magyar
Čeština
Svenska
Norsk
Dansk
Kiswahili
ไทย
বাংলা
فارسی
Tiếng Việt
Filipino
Afrikaans
Shqip
Azərbaycanca
Беларуская
Bosanski
Български
Hrvatski
Eesti
Suomi
ქართული
Kreyòl Ayisyen
Hawaiian
Bahasa Indonesia
Gaeilge
Қазақша
Lietuvių
Luganda
Lëtzebuergesch
Македонски
Melayu
Malti
Монгол
မြန်မာ
Norsk
فارسی
ਪੰਜਾਬੀ
Română
Samoan
संस्कृतम्
Српски
Sesotho
ChiShona
سنڌي
Slovenčina
Slovenščina
Soomaali
Basa Sunda
Kiswahili
Svenska
Тоҷикӣ
Татарча
ትግርኛ
Xitsonga
اردو
ئۇيغۇرچە
Oʻzbek
Cymraeg
Xhosa
ייִדיש
Yorùbá
Zulu
Apprentice Mode
10 Modules / ~100 pages
Wizard Mode
~25 Modules / ~400 pages
🎓
CREATE AN EVENT
Cloud Computing for Data Science
( 25 Modules )
Module #1
Introduction to Cloud Computing
Overview of cloud computing, its history, and evolution
Module #2
Cloud Computing Service Models
Exploring IaaS, PaaS, and SaaS service models
Module #3
Cloud Deployment Models
Understanding public, private, hybrid, and community cloud deployment models
Module #4
Cloud Providers and Market Trends
Overview of major cloud providers (AWS, Azure, GCP, IBM) and market trends
Module #5
Data Science in the Cloud
Introduction to data science in the cloud, benefits, and challenges
Module #6
Cloud Storage for Data Science
Exploring cloud storage options (blob storage, object storage, file storage)
Module #7
Cloud Data Warehousing
Introduction to cloud data warehousing, Amazon Redshift, and Google BigQuery
Module #8
Cloud-based Data Lakes
Building data lakes with cloud storage, AWS Lake Formation, and GCP Cloud Storage
Module #9
Cloud-based NoSQL Databases
Exploring cloud-based NoSQL databases, Amazon DynamoDB, and Google Cloud Firestore
Module #10
Cloud-based Relational Databases
Exploring cloud-based relational databases, Amazon RDS, and Google Cloud SQL
Module #11
Cloud-native Data Processing
Introduction to cloud-native data processing, Apache Spark, and Apache Flink
Module #12
Cloud-based Machine Learning
Introduction to cloud-based machine learning, AWS SageMaker, and Google Cloud AI Platform
Module #13
Cloud-based Deep Learning
Introduction to cloud-based deep learning, TensorFlow, and PyTorch
Module #14
Cloud Security and Compliance
Overview of cloud security and compliance, IAM, and data encryption
Module #15
Cloud Cost Optimization
Strategies for cloud cost optimization, cost estimation, and resource utilization
Module #16
Cloud Migration and Deployment
Migrating data science workloads to the cloud, containerization, and serverless computing
Module #17
Cloud-based Collaboration and Version Control
Using cloud-based collaboration tools, GitHub, and GitLab for data science
Module #18
Cloud-based Data Visualization
Cloud-based data visualization, Tableau, Power BI, and D3.js
Module #19
Cloud-based Workflow Automation
Automating data science workflows, Apache Airflow, and Zapier
Module #20
Cloud-based Model Deployment and Management
Deploying and managing machine learning models in the cloud
Module #21
Case Studies in Cloud-based Data Science
Real-world case studies of cloud-based data science projects
Module #22
Best Practices for Cloud-based Data Science
Best practices for cloud-based data science, architecture, and implementation
Module #23
Cloud-based Data Science for Specific Industries
Cloud-based data science applications for healthcare, finance, and retail
Module #24
Future of Cloud Computing for Data Science
Emerging trends and future directions for cloud computing in data science
Module #25
Course Wrap-Up & Conclusion
Planning next steps in Cloud Computing for Data Science career
Ready to Learn, Share, and Compete?
Create Your Event Now
Language Learning Assistant
with Voice Support
Hello! Ready to begin? Let's test your microphone.
▶
Start Listening
Copyright 2025 @ WIZAPE.com
All Rights Reserved
CONTACT-US
PRIVACY POLICY