77 Languages
English
Français
Español
Deutsch
Italiano
中文
हिंदी
العربية
Русский
Português
日本語
한국어
Türkçe
Polski
Nederlands
Magyar
Čeština
Svenska
Norsk
Dansk
Kiswahili
ไทย
বাংলা
فارسی
Tiếng Việt
Filipino
Afrikaans
Shqip
Azərbaycanca
Беларуская
Bosanski
Български
Hrvatski
Eesti
Suomi
ქართული
Kreyòl Ayisyen
Hawaiian
Bahasa Indonesia
Gaeilge
Қазақша
Lietuvių
Luganda
Lëtzebuergesch
Македонски
Melayu
Malti
Монгол
မြန်မာ
Norsk
فارسی
ਪੰਜਾਬੀ
Română
Samoan
संस्कृतम्
Српски
Sesotho
ChiShona
سنڌي
Slovenčina
Slovenščina
Soomaali
Basa Sunda
Kiswahili
Svenska
Тоҷикӣ
Татарча
ትግርኛ
Xitsonga
اردو
ئۇيغۇرچە
Oʻzbek
Cymraeg
Xhosa
ייִדיש
Yorùbá
Zulu
Apprentice Mode
10 Modules / ~100 pages
Wizard Mode
~25 Modules / ~400 pages
🎓
CREATE AN EVENT
Data Engineering
( 24 Modules )
Module #1
Introduction to Data Engineering
Overview of data engineering, importance, and role in data science
Module #2
Data Engineering Fundamentals
Data processing, data storage, and data architecture basics
Module #3
Data Ingestion Patterns
Designing and implementing data ingestion pipelines
Module #4
Data Storage Options
Relational databases, NoSQL databases, and data warehousing
Module #5
Big Data Storage Solutions
HDFS, HBase, and other big data storage options
Module #6
Data Processing Fundamentals
Batch processing, stream processing, and real-time processing
Module #7
Apache Spark Fundamentals
Introduction to Apache Spark, Spark Core, and Spark SQL
Module #8
Batch Processing with Apache Spark
Batch processing use cases and implementations with Spark
Module #9
Stream Processing with Apache Spark
Stream processing use cases and implementations with Spark
Module #10
Real-Time Processing with Apache Flink
Introduction to Apache Flink and real-time processing use cases
Module #11
Data Pipelines and Workflow Management
Designing and implementing data pipelines with Apache Airflow and Apache NiFi
Module #12
Data Quality and Data Governance
Data quality metrics, data governance, and data lineage
Module #13
Data Security and Access Control
Data encryption, access control, and security best practices
Module #14
Cloud-Based Data Engineering
Cloud-based data engineering with AWS, GCP, and Azure
Module #15
Containerization and Orchestration
Containerization with Docker and orchestration with Kubernetes
Module #16
Monitoring and Logging in Data Engineering
Monitoring and logging best practices in data engineering
Module #17
Testing and Validation in Data Engineering
Testing and validation strategies for data pipelines and systems
Module #18
Data Engineering for Machine Learning
Data engineering for machine learning models and AI applications
Module #19
Real-World Data Engineering Use Cases
Case studies and real-world examples of data engineering applications
Module #20
Data Engineering Tools and Technologies
Survey of data engineering tools and technologies
Module #21
Data Engineering Best Practices
Best practices for data engineering design, development, and deployment
Module #22
Data Engineering at Scale
Scalability and performance considerations for large-scale data engineering systems
Module #23
Data Engineering for Data Science
Collaboration between data engineers and data scientists
Module #24
Course Wrap-Up & Conclusion
Planning next steps in Data Engineering career
Ready to Learn, Share, and Compete?
Create Your Event Now
Language Learning Assistant
with Voice Support
Hello! Ready to begin? Let's test your microphone.
▶
Start Listening
Copyright 2025 @ WIZAPE.com
All Rights Reserved
CONTACT-US
PRIVACY POLICY