77 Languages
English
Français
Español
Deutsch
Italiano
中文
हिंदी
العربية
Русский
Português
日本語
한국어
Türkçe
Polski
Nederlands
Magyar
Čeština
Svenska
Norsk
Dansk
Kiswahili
ไทย
বাংলা
فارسی
Tiếng Việt
Filipino
Afrikaans
Shqip
Azərbaycanca
Беларуская
Bosanski
Български
Hrvatski
Eesti
Suomi
ქართული
Kreyòl Ayisyen
Hawaiian
Bahasa Indonesia
Gaeilge
Қазақша
Lietuvių
Luganda
Lëtzebuergesch
Македонски
Melayu
Malti
Монгол
မြန်မာ
Norsk
فارسی
ਪੰਜਾਬੀ
Română
Samoan
संस्कृतम्
Српски
Sesotho
ChiShona
سنڌي
Slovenčina
Slovenščina
Soomaali
Basa Sunda
Kiswahili
Svenska
Тоҷикӣ
Татарча
ትግርኛ
Xitsonga
اردو
ئۇيغۇرچە
Oʻzbek
Cymraeg
Xhosa
ייִדיש
Yorùbá
Zulu
Apprentice Mode
10 Modules / ~100 pages
Wizard Mode
~25 Modules / ~400 pages
🎓
CREATE AN EVENT
Data Science
( 24 Modules )
Module #1
Introduction to Data Science
Overview of data science, importance, and applications
Module #2
Data Science Process
Understanding the data science process:problem definition, data collection, cleaning, analysis, and visualization
Module #3
Python for Data Science
Introduction to Python programming language and its libraries for data science (NumPy, Pandas, etc.)
Module #4
Data Preprocessing
Handling missing values, data normalization, feature scaling, and data transformation
Module #5
Data Visualization
Introduction to data visualization using Matplotlib and Seaborn
Module #6
Descriptive Statistics
Measures of central tendency, variability, and data distribution
Module #7
Inferential Statistics
Hypothesis testing, confidence intervals, and p-values
Module #8
Regression Analysis
Simple and multiple linear regression, regression assumptions, and model evaluation
Module #9
Feature Engineering
Feature selection, extraction, and creation techniques
Module #10
Supervised Learning
Introduction to supervised learning, classification, and regression
Module #11
Unsupervised Learning
Introduction to unsupervised learning, clustering, and dimensionality reduction
Module #12
Model Evaluation
Metrics for evaluating model performance, overfitting, and underfitting
Module #13
Decision Trees and Random Forests
Introduction to decision trees and random forests, advantages, and limitations
Module #14
Support Vector Machines
Introduction to support vector machines, kernel trick, and SVM types
Module #15
Neural Networks
Introduction to neural networks, perceptron, and multilayer perceptron
Module #16
Deep Learning
Introduction to deep learning, convolutional neural networks, and recurrent neural networks
Module #17
Natural Language Processing
Introduction to natural language processing, text preprocessing, and text representation
Module #18
Big Data and NoSQL Databases
Introduction to big data, Hadoop ecosystem, and NoSQL databases
Module #19
Data Storytelling
Effective communication of insights and results using data visualization and storytelling
Module #20
Data Science Tools and Technologies
Introduction to data science tools and technologies, Jupyter Notebooks, and Git
Module #21
Case Study 1:Regression Analysis
Applying regression analysis to a real-world problem
Module #22
Case Study 2:Classification
Applying classification techniques to a real-world problem
Module #23
Case Study 3:Clustering
Applying clustering techniques to a real-world problem
Module #24
Course Wrap-Up & Conclusion
Planning next steps in Data Science career
Ready to Learn, Share, and Compete?
Create Your Event Now
Language Learning Assistant
with Voice Support
Hello! Ready to begin? Let's test your microphone.
▶
Start Listening
Copyright 2025 @ WIZAPE.com
All Rights Reserved
CONTACT-US
PRIVACY POLICY