77 Languages
Logo

Apprentice Mode
10 Modules / ~100 pages
Wizard Mode
~25 Modules / ~400 pages
🎓
CREATE AN EVENT

Data Visualization with Python Basics
( 25 Modules )

Module #1
Introduction to Data Visualization
Overview of data visualization, importance, and Python libraries used for data visualization
Module #2
Setting up Python for Data Visualization
Installing Python, necessary libraries, and IDE setup for data visualization
Module #3
Python Basics for Data Visualization
Review of basic Python concepts:variables, data types, loops, conditional statements
Module #4
Importing and Cleaning Data
Using Pandas to import and clean datasets for visualization
Module #5
Introduction to Matplotlib
Basic plotting with Matplotlib:line plots, scatter plots, bar charts
Module #6
Customizing Matplotlib Plots
Customizing plots:colors, labels, titles, and adding additional features
Module #7
Introduction to Seaborn
Visualizing statistical relationships with Seaborn:heatmaps, scatterplots
Module #8
Seaborn Visualizations:Distributions and Categorical Data
Visualizing distributions and categorical data with Seaborn
Module #9
Introduction to Plotly
Interactive visualizations with Plotly:line plots, scatter plots, bar charts
Module #10
Plotly Interactive Visualizations
Creating interactive visualizations with Plotly:hover-over text, zooming, and more
Module #11
Data Visualization Best Practices
Design principles for effective data visualization:color, typography, and more
Module #12
Visualizing Geospatial Data
Using Folium and Plotly to visualize geospatial data:maps and location-based data
Module #13
Visualizing Time Series Data
Using Pandas and Matplotlib to visualize time series data:line plots, area charts
Module #14
Visualizing Categorical Data
Using Seaborn and Matplotlib to visualize categorical data:bar charts, heatmaps
Module #15
Visualizing Correlations and Relationships
Using Seaborn and Matplotlib to visualize correlations and relationships:scatter plots, correlation matrices
Module #16
Creating Interactive Dashboards
Using Dash and Plotly to create interactive dashboards
Module #17
Deploying Data Visualizations
Deploying data visualizations to the web:using GitHub Pages, Heroku, and more
Module #18
Case Study:Exploring a Dataset
Applying data visualization skills to a real-world dataset:exploratory data analysis
Module #19
Case Study:Visualizing a Story
Using data visualization to tell a story:creating a narrative with data
Module #20
Advanced Data Visualization Techniques
Advanced techniques:animation, 3D visualization, and more
Module #21
Working with Big Data
Scaling data visualization for large datasets:using Dask, Spark, and more
Module #22
Data Visualization in Machine Learning
Using data visualization in machine learning:visualizing models, feature importance, and more
Module #23
Best Practices for Data Visualization in Industry
Applying data visualization skills in industry:considerations for stakeholder communication
Module #24
Final Project:Creating a Data Visualization Portfolio
Creating a data visualization portfolio:applying skills to a real-world project
Module #25
Course Wrap-Up & Conclusion
Planning next steps in Data Visualization with Python Basics career


Ready to Learn, Share, and Compete?

Language Learning Assistant
with Voice Support

Hello! Ready to begin? Let's test your microphone.
Copyright 2025 @ WIZAPE.com
All Rights Reserved
CONTACT-USPRIVACY POLICY