77 Languages
English
Français
Español
Deutsch
Italiano
中文
हिंदी
العربية
Русский
Português
日本語
한국어
Türkçe
Polski
Nederlands
Magyar
Čeština
Svenska
Norsk
Dansk
Kiswahili
ไทย
বাংলা
فارسی
Tiếng Việt
Filipino
Afrikaans
Shqip
Azərbaycanca
Беларуская
Bosanski
Български
Hrvatski
Eesti
Suomi
ქართული
Kreyòl Ayisyen
Hawaiian
Bahasa Indonesia
Gaeilge
Қазақша
Lietuvių
Luganda
Lëtzebuergesch
Македонски
Melayu
Malti
Монгол
မြန်မာ
Norsk
فارسی
ਪੰਜਾਬੀ
Română
Samoan
संस्कृतम्
Српски
Sesotho
ChiShona
سنڌي
Slovenčina
Slovenščina
Soomaali
Basa Sunda
Kiswahili
Svenska
Тоҷикӣ
Татарча
ትግርኛ
Xitsonga
اردو
ئۇيغۇرچە
Oʻzbek
Cymraeg
Xhosa
ייִדיש
Yorùbá
Zulu
Apprentice Mode
10 Modules / ~100 pages
Wizard Mode
~25 Modules / ~400 pages
🎓
CREATE AN EVENT
Deep Learning
( 25 Modules )
Module #1
Introduction to Deep Learning
Overview of deep learning, history, and applications
Module #2
Mathematical Prerequisites
Review of linear algebra, calculus, and probability theory
Module #3
Neural Networks Basics
Introduction to artificial neural networks, perceptrons, and multilayer perceptrons
Module #4
Activation Functions and Backpropagation
Activation functions, backpropagation, and gradient descent
Module #5
Building and Training Neural Networks
Hands-on experience with building and training neural networks using a deep learning framework
Module #6
Convolutional Neural Networks (CNNs)
Introduction to CNNs, convolutional layers, and pooling layers
Module #7
CNN Architectures
AlexNet, VGGNet, GoogLeNet, and ResNet architectures
Module #8
Transfer Learning and Fine-tuning
Using pre-trained CNN models and fine-tuning for image classification tasks
Module #9
Recurrent Neural Networks (RNNs)
Introduction to RNNs, simple RNNs, and LSTM networks
Module #10
RNN Architectures
GRU, Bidirectional RNNs, and Encoder-Decoder models
Module #11
Sequence-to-Sequence Models
Machine translation, chatbots, and sequence-to-sequence models
Module #12
Generative Models
Introduction to generative models, GANs, and VAEs
Module #13
Autoencoders and Variational Autoencoders
Dimensionality reduction, autoencoders, and VAEs
Module #14
Generative Adversarial Networks (GANs)
GANs, DCGANs, and conditional GANs
Module #15
Deep Reinforcement Learning
Introduction to reinforcement learning, Q-learning, and policy gradients
Module #16
Deep Reinforcement Learning Algorithms
DDPG, Actor-Critic methods, and AlphaGo
Module #17
Unsupervised Learning and Clustering
K-means, hierarchical clustering, and dimensionality reduction
Module #18
Deep Learning for Natural Language Processing
Word embeddings, language models, and text classification
Module #19
Attention Mechanisms
Attention in NLP, transformers, and BERT
Module #20
Deep Learning for Computer Vision
Object detection, segmentation, and tracking
Module #21
Deep Learning Frameworks
TensorFlow, PyTorch, and Keras
Module #22
Model Evaluation and Hyperparameter Tuning
Model evaluation metrics, hyperparameter tuning, and cross-validation
Module #23
Deep Learning Deployment and Production
Model deployment, model serving, and productionization
Module #24
Ethics and Fairness in Deep Learning
Ethical considerations, bias, and fairness in deep learning models
Module #25
Course Wrap-Up & Conclusion
Planning next steps in Deep Learning career
Ready to Learn, Share, and Compete?
Create Your Event Now
Language Learning Assistant
with Voice Support
Hello! Ready to begin? Let's test your microphone.
▶
Start Listening
Copyright 2025 @ WIZAPE.com
All Rights Reserved
CONTACT-US
PRIVACY POLICY