77 Languages
English
Français
Español
Deutsch
Italiano
中文
हिंदी
العربية
Русский
Português
日本語
한국어
Türkçe
Polski
Nederlands
Magyar
Čeština
Svenska
Norsk
Dansk
Kiswahili
ไทย
বাংলা
فارسی
Tiếng Việt
Filipino
Afrikaans
Shqip
Azərbaycanca
Беларуская
Bosanski
Български
Hrvatski
Eesti
Suomi
ქართული
Kreyòl Ayisyen
Hawaiian
Bahasa Indonesia
Gaeilge
Қазақша
Lietuvių
Luganda
Lëtzebuergesch
Македонски
Melayu
Malti
Монгол
မြန်မာ
Norsk
فارسی
ਪੰਜਾਬੀ
Română
Samoan
संस्कृतम्
Српски
Sesotho
ChiShona
سنڌي
Slovenčina
Slovenščina
Soomaali
Basa Sunda
Kiswahili
Svenska
Тоҷикӣ
Татарча
ትግርኛ
Xitsonga
اردو
ئۇيغۇرچە
Oʻzbek
Cymraeg
Xhosa
ייִדיש
Yorùbá
Zulu
Apprentice Mode
10 Modules / ~100 pages
Wizard Mode
~25 Modules / ~400 pages
🎓
CREATE AN EVENT
Introduction to Data Engineering
( 24 Modules )
Module #1
Introduction to Data Engineering
Overview of data engineering, its importance, and career paths
Module #2
Data Engineering Fundamentals
Key concepts, data pipelines, and data processing
Module #3
Data Storage Options
Relational databases, NoSQL databases, and data warehousing
Module #4
Big Data and Distributed Systems
Introduction to big data, Hadoop, and distributed systems
Module #5
Data Ingestion and Integration
Data ingestion methods, APIs, and data integration patterns
Module #6
Data Processing Fundamentals
Batch processing, stream processing, and real-time processing
Module #7
Apache Spark Introduction
Overview of Apache Spark, its ecosystem, and use cases
Module #8
Spark Core and DataFrames
Working with Spark Core, DataFrames, and datasets
Module #9
Spark Streaming and Structured Streaming
Real-time data processing with Spark Streaming and Structured Streaming
Module #10
Data Warehousing and Analytics
Introduction to data warehousing, star and snowflake schemas
Module #11
Data Visualization and Reporting
Data visualization tools, reporting, and business intelligence
Module #12
Data Quality and Governance
Data quality, data governance, and data lineage
Module #13
Security and Access Control
Data security, access control, and compliance
Module #14
Cloud Computing for Data Engineering
Cloud computing services, AWS, GCP, and Azure for data engineering
Module #15
Building Data Pipelines
Designing and building data pipelines with Apache Beam and Apache NiFi
Module #16
Monitoring and Observability
Monitoring data pipelines, logging, and observability
Module #17
Data Engineering Best Practices
Design patterns, testing, and deployment strategies
Module #18
Case Studies and Industry Applications
Real-world applications of data engineering in various industries
Module #19
Data Engineering Tools and Technologies
Survey of data engineering tools, Kafka, Flink, and more
Module #20
Machine Learning and AI for Data Engineers
Introduction to machine learning and AI for data engineers
Module #21
Collaboration and Communication
Soft skills for data engineers, collaboration, and communication
Module #22
Career Development and Growth
Career paths, growth opportunities, and staying current in data engineering
Module #23
Project Development and Implementation
Guided project development and implementation
Module #24
Course Wrap-Up & Conclusion
Planning next steps in Introduction to Data Engineering career
Ready to Learn, Share, and Compete?
Create Your Event Now
Language Learning Assistant
with Voice Support
Hello! Ready to begin? Let's test your microphone.
▶
Start Listening
Copyright 2025 @ WIZAPE.com
All Rights Reserved
CONTACT-US
PRIVACY POLICY