77 Languages
English
Français
Español
Deutsch
Italiano
中文
हिंदी
العربية
Русский
Português
日本語
한국어
Türkçe
Polski
Nederlands
Magyar
Čeština
Svenska
Norsk
Dansk
Kiswahili
ไทย
বাংলা
فارسی
Tiếng Việt
Filipino
Afrikaans
Shqip
Azərbaycanca
Беларуская
Bosanski
Български
Hrvatski
Eesti
Suomi
ქართული
Kreyòl Ayisyen
Hawaiian
Bahasa Indonesia
Gaeilge
Қазақша
Lietuvių
Luganda
Lëtzebuergesch
Македонски
Melayu
Malti
Монгол
မြန်မာ
Norsk
فارسی
ਪੰਜਾਬੀ
Română
Samoan
संस्कृतम्
Српски
Sesotho
ChiShona
سنڌي
Slovenčina
Slovenščina
Soomaali
Basa Sunda
Kiswahili
Svenska
Тоҷикӣ
Татарча
ትግርኛ
Xitsonga
اردو
ئۇيغۇرچە
Oʻzbek
Cymraeg
Xhosa
ייִדיש
Yorùbá
Zulu
Apprentice Mode
10 Modules / ~100 pages
Wizard Mode
~25 Modules / ~400 pages
🎓
CREATE AN EVENT
Machine Learning
( 24 Modules )
Module #1
Introduction to Machine Learning
Overview of machine learning, types of machine learning, and importance of machine learning
Module #2
Mathematical Foundations
Linear algebra, calculus, probability, and statistics
Module #3
Data Preprocessing
Data cleaning, feature scaling, normalization, and feature selection
Module #4
Supervised Learning
Introduction to supervised learning, regression, and classification
Module #5
Linear Regression
Simple and multiple linear regression, cost function, and gradient descent
Module #6
Logistic Regression
Logistic regression, sigmoid function, and cost function
Module #7
Decision Trees
Introduction to decision trees, entropy, and information gain
Module #8
Random Forests
Ensemble learning, random forests, and hyperparameter tuning
Module #9
Support Vector Machines
Introduction to SVMs, kernel trick, and soft margin SVMs
Module #10
Unsupervised Learning
Introduction to unsupervised learning, clustering, and dimensionality reduction
Module #11
K-Means Clustering
K-means clustering algorithm, cost function, and Lloyds algorithm
Module #12
Hierarchical Clustering
Hierarchical clustering, agglomerative and divisive clustering
Module #13
Principal Component Analysis
Introduction to PCA, eigenvalues, and eigenvectors
Module #14
Deep Learning Fundamentals
Introduction to deep learning, neural networks, and perceptron
Module #15
Convolutional Neural Networks
Introduction to CNNs, convolutional layers, and pooling layers
Module #16
Recurrent Neural Networks
Introduction to RNNs, LSTM, and GRU
Module #17
Natural Language Processing
Introduction to NLP, text preprocessing, and word embeddings
Module #18
Model Evaluation and Selection
Metrics for evaluation, overfitting, and model selection techniques
Module #19
Hyperparameter Tuning
Introduction to hyperparameter tuning, grid search, and random search
Module #20
Model Deployment
Deploying machine learning models, model serving, and considerations
Module #21
Ethics and Fairness in Machine Learning
Bias and fairness in machine learning, ethics, and transparency
Module #22
Case Studies in Machine Learning
Real-world applications of machine learning, case studies, and projects
Module #23
Advanced Topics in Machine Learning
Advanced topics in machine learning, including reinforcement learning and generative models
Module #24
Course Wrap-Up & Conclusion
Planning next steps in Machine Learning career
Ready to Learn, Share, and Compete?
Create Your Event Now
Language Learning Assistant
with Voice Support
Hello! Ready to begin? Let's test your microphone.
▶
Start Listening
Copyright 2025 @ WIZAPE.com
All Rights Reserved
CONTACT-US
PRIVACY POLICY