77 Languages
English
Français
Español
Deutsch
Italiano
中文
हिंदी
العربية
Русский
Português
日本語
한국어
Türkçe
Polski
Nederlands
Magyar
Čeština
Svenska
Norsk
Dansk
Kiswahili
ไทย
বাংলা
فارسی
Tiếng Việt
Filipino
Afrikaans
Shqip
Azərbaycanca
Беларуская
Bosanski
Български
Hrvatski
Eesti
Suomi
ქართული
Kreyòl Ayisyen
Hawaiian
Bahasa Indonesia
Gaeilge
Қазақша
Lietuvių
Luganda
Lëtzebuergesch
Македонски
Melayu
Malti
Монгол
မြန်မာ
Norsk
فارسی
ਪੰਜਾਬੀ
Română
Samoan
संस्कृतम्
Српски
Sesotho
ChiShona
سنڌي
Slovenčina
Slovenščina
Soomaali
Basa Sunda
Kiswahili
Svenska
Тоҷикӣ
Татарча
ትግርኛ
Xitsonga
اردو
ئۇيغۇرچە
Oʻzbek
Cymraeg
Xhosa
ייִדיש
Yorùbá
Zulu
Apprentice Mode
10 Modules / ~100 pages
Wizard Mode
~25 Modules / ~400 pages
🎓
CREATE AN EVENT
Machine Learning for Predictive Models
( 25 Modules )
Module #1
Introduction to Machine Learning
Overview of machine learning, types of machine learning, and importance of predictive models
Module #2
Mathematical Foundations
Linear Algebra, Calculus, and Probability Theory essentials for machine learning
Module #3
Types of Predictive Models
Regression, Classification, Clustering, and Dimensionality Reduction techniques
Module #4
Supervised Learning
Introduction to supervised learning, advantages, and real-world applications
Module #5
Unsupervised Learning
Introduction to unsupervised learning, advantages, and real-world applications
Module #6
Data Preprocessing
Handling missing values, feature scaling, normalization, and data transformation
Module #7
Feature Engineering
Techniques for feature extraction, selection, and creation
Module #8
Model Evaluation Metrics
Measuring model performance using accuracy, precision, recall, F1-score, and more
Module #9
Regression Analysis
Simple and multiple linear regression, polynomial regression, and regularization techniques
Module #10
Logistic Regression
Binary and multi-class logistic regression, confusion matrices, and ROC curves
Module #11
Decision Trees and Random Forests
Introduction to decision trees, random forests, and ensemble learning
Module #12
Support Vector Machines (SVMs)
SVMs for classification and regression, kernel methods, and regularization techniques
Module #13
K-Nearest Neighbors (KNN)
KNN algorithm for classification and regression, distance metrics, and parameter tuning
Module #14
Clustering Algorithms
K-means, Hierarchical clustering, and density-based clustering methods
Module #15
Neural Networks and Deep Learning
Introduction to neural networks, deep learning, and TensorFlow/Keras
Module #16
Natural Language Processing (NLP)
Text preprocessing, tokenization, and sentiment analysis using NLP techniques
Module #17
Model Selection and Hyperparameter Tuning
Cross-validation, grid search, and random search for hyperparameter tuning
Module #18
Overfitting and Underfitting
Understanding overfitting and underfitting, and techniques to prevent them
Module #19
Big Data and NoSQL Databases
Handling large datasets, NoSQL databases, and distributed computing
Module #20
Apache Spark and MLlib
Distributed machine learning using Apache Spark and MLlib
Module #21
Model Deployment and Integration
Deploying machine learning models, model serving, and integration with web applications
Module #22
Explainable AI and Model Interpretability
Techniques for model interpretation, feature importance, and SHAP values
Module #23
Ethics and Fairness in Machine Learning
Fairness, bias, and ethics in machine learning, and techniques to mitigate them
Module #24
Case Studies and Project Development
Real-world case studies and project development using machine learning techniques
Module #25
Course Wrap-Up & Conclusion
Planning next steps in Machine Learning for Predictive Models career
Ready to Learn, Share, and Compete?
Create Your Event Now
Language Learning Assistant
with Voice Support
Hello! Ready to begin? Let's test your microphone.
▶
Start Listening
Copyright 2025 @ WIZAPE.com
All Rights Reserved
CONTACT-US
PRIVACY POLICY