77 Languages
English
Français
Español
Deutsch
Italiano
中文
हिंदी
العربية
Русский
Português
日本語
한국어
Türkçe
Polski
Nederlands
Magyar
Čeština
Svenska
Norsk
Dansk
Kiswahili
ไทย
বাংলা
فارسی
Tiếng Việt
Filipino
Afrikaans
Shqip
Azərbaycanca
Беларуская
Bosanski
Български
Hrvatski
Eesti
Suomi
ქართული
Kreyòl Ayisyen
Hawaiian
Bahasa Indonesia
Gaeilge
Қазақша
Lietuvių
Luganda
Lëtzebuergesch
Македонски
Melayu
Malti
Монгол
မြန်မာ
Norsk
فارسی
ਪੰਜਾਬੀ
Română
Samoan
संस्कृतम्
Српски
Sesotho
ChiShona
سنڌي
Slovenčina
Slovenščina
Soomaali
Basa Sunda
Kiswahili
Svenska
Тоҷикӣ
Татарча
ትግርኛ
Xitsonga
اردو
ئۇيغۇرچە
Oʻzbek
Cymraeg
Xhosa
ייִדיש
Yorùbá
Zulu
Apprentice Mode
10 Modules / ~100 pages
Wizard Mode
~25 Modules / ~400 pages
🎓
CREATE AN EVENT
Probability and Statistics
( 25 Modules )
Module #1
Introduction to Probability and Statistics
Overview of the importance and applications of probability and statistics in real-world scenarios
Module #2
Basic Concepts of Probability
Understanding probability, sample spaces, events, and the concept of randomness
Module #3
Types of Probability
Exploring theoretical, experimental, and subjective probability
Module #4
Rules of Probability
Learning the addition, multiplication, and complement rules of probability
Module #5
Conditional Probability
Understanding conditional probability, independence, and Bayes theorem
Module #6
Random Variables
Introduction to discrete and continuous random variables
Module #7
Probability Distributions
Exploring Bernoulli, Binomial, Poisson, and Uniform distributions
Module #8
Normal Distribution
Understanding the normal distribution, its properties, and applications
Module #9
Statistical Measures
Calculating mean, median, mode, variance, and standard deviation
Module #10
Data Visualization
Understanding the importance of data visualization and different types of plots
Module #11
Descriptive Statistics
Summarizing and describing data using statistics and data visualization
Module #12
Inferential Statistics
Introduction to making inferences about populations based on sample data
Module #13
Sampling Distributions
Understanding sampling distributions and the central limit theorem
Module #14
Hypothesis Testing
Formulating and testing hypotheses using statistical methods
Module #15
Confidence Intervals
Constructing and interpreting confidence intervals for population parameters
Module #16
Regression Analysis
Introduction to simple and multiple linear regression
Module #17
Correlation Analysis
Understanding correlation coefficients and their interpretation
Module #18
Chi-Square Tests
Using chi-square tests for goodness of fit and independence
Module #19
Non-Parametric Tests
Introduction to non-parametric tests for nominal and ordinal data
Module #20
ANOVA and F-Tests
Using ANOVA and F-tests for comparing means and variances
Module #21
Experimental Design
Designing experiments and understanding blocking, randomization, and replication
Module #22
Survey Research Methods
Understanding survey research methods, including questionnaire design and sampling
Module #23
Big Data and Data Mining
Introduction to big data and data mining techniques
Module #24
R and Python for Probability and Statistics
Using R and Python for probability and statistical analysis
Module #25
Course Wrap-Up & Conclusion
Planning next steps in Probability and Statistics career
Ready to Learn, Share, and Compete?
Create Your Event Now
Language Learning Assistant
with Voice Support
Hello! Ready to begin? Let's test your microphone.
▶
Start Listening
Copyright 2025 @ WIZAPE.com
All Rights Reserved
CONTACT-US
PRIVACY POLICY