77 Languages
English
Français
Español
Deutsch
Italiano
中文
हिंदी
العربية
Русский
Português
日本語
한국어
Türkçe
Polski
Nederlands
Magyar
Čeština
Svenska
Norsk
Dansk
Kiswahili
ไทย
বাংলা
فارسی
Tiếng Việt
Filipino
Afrikaans
Shqip
Azərbaycanca
Беларуская
Bosanski
Български
Hrvatski
Eesti
Suomi
ქართული
Kreyòl Ayisyen
Hawaiian
Bahasa Indonesia
Gaeilge
Қазақша
Lietuvių
Luganda
Lëtzebuergesch
Македонски
Melayu
Malti
Монгол
မြန်မာ
Norsk
فارسی
ਪੰਜਾਬੀ
Română
Samoan
संस्कृतम्
Српски
Sesotho
ChiShona
سنڌي
Slovenčina
Slovenščina
Soomaali
Basa Sunda
Kiswahili
Svenska
Тоҷикӣ
Татарча
ትግርኛ
Xitsonga
اردو
ئۇيغۇرچە
Oʻzbek
Cymraeg
Xhosa
ייִדיש
Yorùbá
Zulu
Apprentice Mode
10 Modules / ~100 pages
Wizard Mode
~25 Modules / ~400 pages
🎓
CREATE AN EVENT
Statistical Analysis with R
( 25 Modules )
Module #1
Introduction to Statistical Analysis
Overview of statistical analysis, importance of R, and setting up R environment
Module #2
Data Types and Structures in R
Introduction to R data types, vectors, matrices, data frames, and lists
Module #3
Data Visualization
Introduction to data visualization in R, using plots and charts to explore data
Module #4
Descriptive Statistics
Measures of central tendency, variability, and data summarization
Module #5
Introduction to Probability
Basic concepts of probability, events, and probability distributions
Module #6
Discrete Probability Distributions
Bernoulli, Binomial, and Poisson distributions
Module #7
Continuous Probability Distributions
Uniform, Normal, and Exponential distributions
Module #8
Sampling Distributions
Sampling distributions, central limit theorem, and confidence intervals
Module #9
Hypothesis Testing
Introduction to hypothesis testing, types of tests, and test statistics
Module #10
Confidence Intervals
Construction and interpretation of confidence intervals
Module #11
Regression Analysis
Simple and multiple linear regression, coefficients, and inference
Module #12
Model Diagnostics
Assumptions of linear regression, residuals, and model validation
Module #13
Time Series Analysis
Introduction to time series, components, and forecasting methods
Module #14
Analysis of Variance (ANOVA)
One-way and two-way ANOVA, F-tests, and post-hoc analysis
Module #15
Non-Parametric Tests
Wilcoxon rank-sum test, Kruskal-Wallis test, and Friedman test
Module #16
Cluster Analysis
Introduction to cluster analysis, hierarchical and k-means clustering
Module #17
Principal Component Analysis (PCA)
Introduction to PCA, dimension reduction, and feature extraction
Module #18
Working with Large Datasets
Efficient data manipulation and analysis with large datasets
Module #19
Data Wrangling and Cleaning
Handling missing values, data transformation, and data normalization
Module #20
R Markdown and Reproducible Research
Creating reports and documents with R Markdown
Module #21
Data Visualization with ggplot2
Advanced data visualization with ggplot2
Module #22
Survival Analysis
Introduction to survival analysis, Kaplan-Meier estimator, and Cox regression
Module #23
Generalized Linear Models (GLMs)
Introduction to GLMs, logistic regression, and Poisson regression
Module #24
Machine Learning with R
Introduction to machine learning, k-NN, decision trees, and random forests
Module #25
Course Wrap-Up & Conclusion
Planning next steps in Statistical Analysis with R career
Ready to Learn, Share, and Compete?
Create Your Event Now
Language Learning Assistant
with Voice Support
Hello! Ready to begin? Let's test your microphone.
▶
Start Listening
Copyright 2025 @ WIZAPE.com
All Rights Reserved
CONTACT-US
PRIVACY POLICY